	Question		Marking details		Marks available							
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac			
1	(a)	(i)	N = number of molecules and $m =$ mass of molecule	1			1					
		(ii)	Use of $\rho = \frac{Nm}{V}$ or equivalent clearly distinguishable (1)									
			Statement that Nm is mass of gas or that ρ is density (1)	2			2	1				
		(iii)	$\sqrt{\overline{c^2}}$ should be $\alpha \sqrt{\frac{1}{\rho}}$ or equivalent e.g. ρc^2 calculated or $p = \frac{1}{3} \rho \overline{c^2} = 53000$ [Pa] (1)									
			Quoting of data points e.g. (1,400) and (4,200) (1)									
			When ρ is 4×, $\sqrt{\overline{c^2}}$ is halved or ρc^2 constant or ρ = constant (1)			3	3	2				
	(b)	(i)	Substitution of $\overline{c^2} = \frac{3x3.0x10^5}{0.5}$ (1) $c_{\text{rms}} = 1.34 \times 10^3 [\text{m s}^{-1}]$ (1)	1	1		2	2				
		(ii)	Either: Use of $n = \frac{0.025}{4 \times 10^{-3}} = 6.25$ (1) $N = 6.25 \times 6.02 \times 10^{23} = 3.76 \times 10^{24}$ (1) Mass of molecule $= \frac{0.025}{3.76 \times 10^{24}} = 6.6 \times 10^{-27}$ [kg] (1) Mean KE per molecule $= \frac{1}{2} \times 6.6 \times 10^{-27} \times (1.34 \times 10^{3})^{2} = 5.9 \times 10^{-21}$ [J] (1) Or: Use of $pV = nRT$ (1) $T = \frac{3 \times 10^{5} \times 0.05 \times 4 \times 10^{-3}}{0.025 \times 8.3}$ (1) = 289 [K] (1) Mean KE per molecule $= \frac{3}{2} \times 1.38 \times 10^{-23} \times 289 = 5.9 \times 10^{-21}$ [J] (1)	1	1 1		4	4				
			Question 1 total	5	4	3	12	9	0			

Question		ction	Marking details	Marks available							
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac		
2	(a)		Attempt to use: Electrical energy supplied = power × time (e.g. 2×7) (1) 50.4 [MJ] (1) Use of $\Delta U = mc\Delta T$. Tolerate mistakes such as $\Delta T = 320$, 573 (1) $\Delta U = 40.3$ [MJ] (1) Statement or clear implication that 10.1 [MJ] (ecf) has escaped from the bricks as heat (1) Clear conclusion that statement is true (ecf) available, but if electrical energy < ΔU a comment on its impossibility is needed (1)			6	6	2			
	(b)	(i)	Calculation of one pV or T (1) Calculation of second pV or T (1) Correct value of T obtained 289 [\pm 5K] (1) Calculation of third pV or T (1) Correct conclusion regarding agreement of values (their data) (1)		1 1 1	1	5	4			
		(ii)	Work done = area (1) Method clear (e.g. rectangle + triangle, counting squares) (1) W between 135 [J] and 225 [J] if correct from method used (1) W in range 166 ± 20 [J], or if outside, comment on whether likely to be too high or too low (1)	1	1 1 1		4	2			
		(iii)	ΔU = increase (accept <i>change</i>) in internal energy and Q = heat <i>in</i> and W = work <i>out</i> (or work done by system)	1			1				
		(iv)	$\Delta U = 0$ [since gas is ideal and $\Delta T = 0$] (1) $Q = \text{answer to } (b)(\text{ii}) \text{ so in range } 166 \pm 20 \text{ [J] (1)}$		2		2				
			Question 2 total	2	9	7	18	8	0		

	Question		Marking details		Marks available							
	Question			AO1	AO2	AO3	Total	Maths	Prac			
3	(a)		Use of $\omega = 2\pi f$ tolerate mistakes over units but not attempts to									
			incorporate 0.45 m or omission of 2π (1) 251 [rad s ⁻¹] (1)	1	1		2	2				
	(b)	(i)	Use of $mr\omega^2$ or $\frac{mv^2}{r}$ with $v = \omega r$ (1)	1			_					
			2270 [N] (ecf) from (a) (1)		1		2	2				
		(ii)	For the sock, $mg = 0.8$ [N] (1) Comment that $mg \ll [resultant]$ force or equivalent (1)			2	2					
	(c)	(i)	Towards cylinder axis (accept circle centre)	1			1					
		(ii)	Straight line towards top of page	1			1					
			Question 3 total	4	2	2	8	4	0			

	Question		Marking details		Marks available							
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac			
4	(a)	(i)	0.3 [s]		1		1					
		(ii)	0.9 [s]		1		1					
	(b)	(i)	0.045 [m]	1			1					
		(ii)	$T = 0.80 \mathrm{s}$ or by implication (1) $\omega = 7.85 \mathrm{[rad s}^{-1}]$ tolerate error due to misreading of T (1)		2		2	1				
		(iii)	0 or zero		1		1					
	(c)	(i)	Reasonable attempt at sinusoid with period of 0.8 s (1) Inverted displacement-time graph (1)	2			2	2				
		(ii)	Acceleration = $\omega^2 A$ at lowest point (1) So $a = (7.85)^2 \times 0.045$ (1) $a = 2.77$ [m s ⁻²] (1) (ecf) on A and ω a < g so therefore it will not separate (1) (ecf)			4	4	2				
			Question 4 total	3	5	4	12	5	0			

	Question	Marking details	Marks available							
	Question		AO1	AO2	AO3	Total	Maths	Prac		
5	(a)	System [capable of oscillation] subjected to ['driving'] force (1) Maximum amplitude of oscillation [accept maximum response] at one frequency [of driving force] (1)	2			2				
	(b)	Natural frequency = 2.0 [Hz] (1) Substitution into $T = 2\pi \sqrt{\frac{m}{k}}$ (1)	1							
		$k = 4\pi^2 mf^2$ or $k = \frac{4\pi^2 m}{T^2}$ or equivalent re-arrangement of equation at any stage (1) $k = 15.8 \text{ N m}^{-1}$ unit mark (1)		1		4	3			
	(c)	Peak lower and at same frequency or lower (1) Low frequency amplitude unaffected, high frequency amplitude lower or unaltered, so curve blunter (1)	2			2				
		Question 5 total	6	2	0	8	3	0		

	Question		Marking details	Marks available							
	Que	Stion		AO1	AO2	AO3	Total	Maths	Prac		
6	(a)	(i)	Mass number = 206 (1) Atomic number = 82 (1)		2		2				
		(ii)	Any 3 × (1) from: • More data on radon dosage • More data on types of cancer • Safe dosage known • Measurable life of lab rate • Killing animals to get data • Encourages animal terrorism	3			3				
	(b)		Use of $\lambda = \frac{\ln 2}{T_{\frac{1}{2}}}$ e.g. $\lambda = 0.182 \text{ day}^{-1} (2.11 \times 10^{-6} \text{ s}^{-1})$ or $t = nT_{\frac{1}{2}} (1)$ Logs taken correctly e.g. $\ln A = \ln A_0 - \lambda t$ or $\ln A = \ln A_0 - n \ln 2$ (1) Algebra correct e.g. $t = \frac{1}{\lambda} \ln \frac{A_0}{A}$ or $n = \frac{1}{\ln 2} \ln \frac{A_0}{A}$ or implied (1) Correct answer 13.2 days unit mark (1.14 × 10 ⁶ s) (1)	1	1 1 1		4	4			
	(c)		Product nuclei give added activity		1		1				
	(d)		Current = rate of flow of charge or equivalent (1) $250 \times 1.15 \times 10^6 \times 1.6 \times 10^{-19} = 4.6 \times 10^{-11}$ [A] (1) Assumption – all charges contribute to the current or all ions are single charges (1)	1	1		3	1			
	(e)		Subtraction of masses (221.9773 – 4.0015 = 217.9758) (1) Conversion of 5.59 MeV to mass (i.e. 0.0060 u or $9.9671 \times 10^{-31} \text{ kg}$) (1) Answer = 217.9698 [u] (or $3.618299 \times 10^{-25} \text{ kg}$ depends on u) (1)	1	1 1		3	2			
			Question 6 total	6	10	0	16	7	0		

	Question	Marking details	Marks available							
	Question			AO2	AO3	Total	Maths	Prac		
7	(a)	Alpha present because significant drop after paper (1) Beta not present because no additional drop after AI (1) Gamma present because significant after AI or Pb (1) Absorbers explained e.g. paper stops alpha, beta stopped by ~1 mm of AI, 15 cm of Pb for gamma (1)	1		1 1 1	4		4		
	(b)	As a check/ensure fair test or equivalent (1) In case source activity changing/distance changed/apparatus disturbed etc (1)			2	2		2		
		Question 7 total	1	0	5	6	0	6		

Quanting	Marking details	Marks available							
Question		AO1	AO2	AO3	Total	Maths	Prac		
Question 8 (a)	Factor explanations F0 – Energy required α mass or $E = mc\Delta T$. F1 – Heat in α surface area. F2 – Increasing thickness – heat must travel further or smaller temperature gradient. Time T0 – Energy α time or energy = power × time (of oven). T1 – Time α mass. T2 – Time α 1/area. T3 - Time increases as thickness increases. 5-6 marks All of F0 – F2 are present. At least 3 from T0 – T3 are present. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Expect 2 from F0 – F2.	AO1	AO2				Prac		
	Expect 2 from T0 – T3. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks 1 from F0 – F2 is present. 1 from T0 – T3 is present. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.								

(b)		Per unit mass is missing	1			1		
(c)		22 × 1·26 = 27·7 [cm]		1		1		
(d)		$\frac{0.46}{1.59} = 0.29 [\text{m}^2]$		1		1		
(e)	(i)	$E = mc\Delta T$ used e.g. = $9 \times 3\ 200 \times 90\ (1)$ Answer = $9 \times 3\ 200 \times 90 = 2.59\ [MJ]\ (1)$	1	1		2	2	
	(ii)	$P = \frac{E}{t}$ [or by implication] (1) $t = \frac{2590000}{2200} = 1200 \text{ s}$ (1)	1	1		2	2	
	(iii)	Some detailed account of the 'lost' energy (1) e.g. All the oven and air also need rise in temperature Heat escapes from the oven to the kitchen/room/surroundings Energy goes to change of state of fat/water Clear statement that most of the energy is lost (1)			1	2		
	(iv)	Electrical energy used: $2200 \times 6.4 \times 60^2$ (1) [=50688000 J] Efficiency = $2590000 / 50688000$ (ecf) = 0.051 or 5.1% (1)		1		2	2	
	(v)	Less than (1) Thermal energy required is only ½ that of 9.0 kg turkey (1) But cooking time >½ that required (1)			1 1 1	3		
		Question 8 total	3	12	5	20	6	0